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We report results of simulations of stimulated Brillouin backscatter
in which we see the second spatial harmonic of the ion density
fluctuation and compare with linear, fluid theory. We also describe

examples of the competition between Raman and Brillouin backscatter.
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Introduction

We begin with a brief review of Raman and Brillouin
backscattering, then describe the simulation results. Stimulated
Raman sc:attering(SRS)"la is the parametric decay of an incident
photon into a scattered photon plus a longtitudinal electron plasma
wave. The wave numbers, k, and frequencies, w, obey the matching
conditions characteristic of parametric processes:
ko=tk +kq o (1)
and wo=w Hi, oy (2)
(the subscripts 0,s, and epw refer to the pump, scattered, and
electron plesma wave, respectively and the - of z refers to
backsqatter). As the electron plasma wave Landau damps and breaks, it
heats electrons into a quasi— Maxwellian distribution of temperature!
Thot ™ (me/2)(u¢p'/kep')z in the absence of Brillouin scattering.
Stimulated Brillouin backscatter (SBS) is a very similar phenomenon
with the electron plasma wave (epw) being replaced with an ion
acoustic wave (ia) in Equations 1 and 2.

Simulations

Fig.1 shows the k spectrum of the electron density vs time from a
1.5 dimensional (two velocities), electromagnetic, relativistic
‘simulation (Oremp). The laser light with IA2=2.5x10!5W/cm® was
propagated through a 128\, slab of plasma with T _=lkev, Te/Ti=30. and
n/he=0.05. Here I is the laser intensity, A, is the laser wavelength,
T, is the electron temperature, T, is the ion temperature, n is the
electron density and n, is the critical density where the plasma
frequency equals the laser frequency. The brief line at kc/b°~l.7

represents Raman backscattering which occurs strongly only before the

Brillouin scattering becomes large. We also measure the Raman
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backscattered light which was 0.04 of the incident intensity between
times 114 and 370 laser cycles, and continued weakly at a reflection
of 0.004 (w./b°~0.73) between times 489-1001 even though the k
spectrum is buried in the noise. This dramatic effect has been seen
experimentally by Walsh, Villeneuve and Baldis!4. The electron and
fon density fluctuation at kc/b°~1.95 is due to Brillouin
backscattering and is most strong between times 300 and 600 cycles.

At times 340-500, the second k harmonic of this density fluctution can
be seen at kc/wy~3.9 (shown also in Fig.2).

The theory presented here for second harmonic generation is
outlined in Ref.15 (see also refs.16,17). Harmonic generation is
another effect which acts to limit the ion wave amplitude, provided
the wave number times the electron Debye length (kAp) is small. If we
neglect kA effects, the frequency of an ion sound wave is simply
proportional to its wave number. Such a wave will then steepen, since
harmonics are resonantly driven. If we consider an ion sound wave
with amplitude 6n, wave number k, and compute the growth of its second
hermonic by linearizing the two—fluid equations, we obtain
én(2k)/n =(1/2)[én(k)/n,12/[1/( 1+k 222 )-1/( 1+4k222)] (3)
%(1/6)[6n(k)/n,1%/kEA]. (KEAG<<1) (4)
Substituting the measured én(k) from Fig.2, and kAp~0.39 into Eq.3
gives 6n(2k)/hc~0.0015 in reasonable agreement with the simulated
0.002 in Fig.2. For Gn(k)/hp>>6kzkg (found from Eq.4 with
én(k)~6n(2k)) the above linearization is invalid, and a rich spectrum
of harmonics is expected (to be discussed in a future publication).
Spatial harmonics of Brillouin-generated ion fluctuations have also

been observed by Walsh and Baldis!® at NRC(Canada) and by Luhmann and

Pewley at UCLA!®,
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In an identical simulation with the ions fixed, the k spectrum
has a pulsating character as noted befored with a peak fraction
absorbed of ~0.04 and a long time fraction of light reflected = 0.016
within times 481-993 cycles. The average x energy increases from 0.5
to 0.9 kev by 600 laser cycles (k is the direction of the
electrostatic field and the laser propagation).

Examples of the competition between Brillouin and Raman.

We have previously reported simulationsd:!3 which show that
Brillouin scattering can reduce Raman absorption and that Raman
heating can reduce Brillouin scattering and raising T, and reducing

Brillouin gain. Table I outlines the results of several runs:

Table 1
n/n, T, T, /T Reman backscattering T,
0.05 1 30 .04,.004 4.5
0.05 1 fixed .04,.016 6
0.1 1 3 .18 12
0.1 1 30 .12 10
0.1 1 fixed -.26 17
0.2 3 S .33 . 50
9.2 3 fixed .33 . 80

The second number in the backscatter column represents the long term
(time greater than 500 cycles) Raman reflection.

Two effects that may explain the decrease in Raman scattering are
(1) pump depletion by Brillouin scattering and (2) competition from
the shorter wavelength Brillouin fluctuations. In the n/n_=0.05 case
there was time averaged 22% Brillouin scatter and about 2.3 e foldings
reduction in Raman gain. Since the Raman backscattering < exp(the

Raman gain) < exp(the available lh%). one can see how a 22% reduction
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in pump intensity could make an order of magnitude difference in the
scattering providing the damping remained constant. Of course, the
damping does not remain constant, which is where the second effect
comes in; that is the damping29:2! due to the shorter wavelength ion
waves. Rozmus, Offenberger, and Fedosejevs2® describe a Raman
threshold in terms of the ion turbulence.

We have also noted® that the Brillouin instability can decrease
the heated electron temperature of Raman backscatter. Two possible
explanations are that the Ramen instability can occur at the k of the
Brillouin ion wave or that the Raman plasma wave is coupled to a
shorter wavelength at k=kep'+kbrill. Neither of these hypotheses are
entirely explored; however, we have some preliminary results. We
solved the Drake and Lee equation for the growth rate oi Raman
backscatter (Fig.3) and find that the growth rate at the k of the
Brillouin instabi]ity is down several decades. Not shown here are
also solutions using the T,,,4 and T, , distribution functions found
in the siﬁulqtion whi;h do not show enough growth at the k of the
Brillouin ion thctuation. Conceivably, ther; is stil]l some coupling
to the Brillouin k as evidenced by the T;,, being well represented by
(me/E)(wep'/kbrill)z; however, this is by no means proof. We also
measured the scattered light peak for Raman with moving and fixed ions
and found that the peak was essentially unaltered showing Wepw WaS
almost the same. It there is an electron plasma wave occurring at
k=k_ ,tKyri11 due to coupling on the Brillouin it wave, it can not bg

resolved from the noise in Fig.1.

epw

In conclusion, we have simulated the second harmonic generation
of ion waves due to Brillouin backscattering and have compared that

favorably with theory. We have presented simulation evidence that
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Thot &nd absorption due to the Raman instability are reduced in the

presence of the Brillouin instability.

Work performed under the auspices of the U.S.Department of Energy
by the Lawrence Livermore National Laboratory under contract number

W7405-ENG-48.
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Fig.l.. Wave number spectrum of the electron density vs time(up) end
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Fig.2. Spectral amplitude of the Brillouin fundamental and second

harmonic vs time.

Estabrook

* Kruer
& llaines



N2 =25 X 10" W/em?

T. = 1 keV

n/n_ = 0.05

Growth rate Raman backscatter v/wy,
%

1 ] 1 N
1.6 1.7 1.8 1.9
kdﬁ)o

Fig.3. Growth rate of Raman backscatter vs kep'c/uo.
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